Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hexabromidotetrakis($\mu_{3}-4$-pyridinium-thiolato- $\left.\kappa^{3} S: S: S\right)$ hexacopper(I)

Mario Wriedt, Inke Jess and Christian Näther*
Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
Correspondence e-mail: cnaether@ac.uni-kiel.de

Received 14 November 2007; accepted 16 November 2007
Key indicators: single-crystal X-ray study; $T=170 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; disorder in main residue; R factor $=0.032 ; w R$ factor $=0.076$; data-to-parameter ratio $=17.5$.

The crystal structure of the title compound, $\left[\mathrm{Cu}_{6} \mathrm{Br}_{6}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)_{4}\right]$, consists of a hexanuclear $\mathrm{Cu}_{6} \mathrm{Br}_{6} \mathrm{~S}_{4}$ cluster in which each copper atom is connected to one bromine atom. The sulfur atoms are each connected to three copper atoms via μ_{3} coordination. Two of the bromine atoms are located on a twofold axis and the clusters are located on a fourfold rotoinversion axis. One unique Cu atom is disordered over two positions; site occupancy factors are 0.6 and 0.4 . The other Cu atom is disordered about a twofold rotation axis.

Related literature

For the isotypic chlorido compound, see: Cheng et al. (2004). For related literature, see: Jess et al. (2007); Näther \& Jess (2006); Näther et al. (2003).

Experimental

Crystal data

$\left[\mathrm{Cu}_{6} \mathrm{Br}_{6}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)_{4}\right]$
$M_{r}=1305.34$
Tetragonal, $I 4_{1} / a$
$a=15.3161(9) \AA$

$$
\begin{aligned}
& c=13.2602(8) \AA \\
& V=3110.6(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

$\mu=12.03 \mathrm{~mm}^{-1}$
$0.11 \times 0.10 \times 0.09 \mathrm{~mm}$
$T=170(2) \mathrm{K}$

Data collection

Stoe IPDS-1 diffractometer
Absorption correction: numerical (X-SHAPE; Stoe \& Cie, 1998a)
$T_{\text {min }}=0.231, T_{\text {max }}=0.349$
13166 measured reflections 1853 independent reflections 1566 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.048$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032 \quad 106$ parameters
$w R\left(F^{2}\right)=0.076$
$S=1.03$
1853 reflections
H -atom parameters constrained
$\Delta \rho_{\max }=0.76 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.01 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

Cu1-S1	2.249 (5)	$\mathrm{Cu} 2-\mathrm{S} 1$	2.278 (2)
$\mathrm{Cu} 1-\mathrm{S} 1^{\text {i }}$	2.253 (5)	$\mathrm{Cu} 2-\mathrm{Br} 2$	2.3718 (13)
$\mathrm{Cu} 1-\mathrm{Br} 1$	2.377 (4)	$\mathrm{Cu} 2-\mathrm{Cu}^{\text {/ii }}$	2.689 (6)
$\mathrm{Cu} 1-\mathrm{Cu} 2{ }^{\text {ii }}$	2.924 (4)	$\mathrm{Cu} 2-\mathrm{Br}^{\text {iv }}$	2.9058 (18)
$\mathrm{Cu} 1^{\prime}-\mathrm{S} 1$	2.319 (6)	$\mathrm{Cu} 2-\mathrm{Cu} 1^{\text {ii }}$	2.924 (4)
$\mathrm{Cu} 1^{\prime}-\mathrm{Sl}^{\text {i }}$	2.324 (7)	$\mathrm{Br} 1-\mathrm{Cu} 1^{\text {iiii }}$	2.666 (3)
$\mathrm{Cu}^{\prime}-\mathrm{Br} 1$	2.477 (6)	$\mathrm{Br} 1-\mathrm{Cu} 2^{v}$	2.9058 (18)
$\mathrm{Cu} 1^{\prime}-\mathrm{Br} 1^{\text {iii }}$	2.666 (3)	$\mathrm{Br} 2-\mathrm{Cu} 2^{\text {ii }}$	2.3718 (13)
$\mathrm{Cu}^{\prime}-\mathrm{Cu} 2^{\text {ii }}$	2.689 (6)	$\mathrm{S} 1-\mathrm{Cu} 1^{\text {vi }}$	2.253 (5)
$\mathrm{Cu} 2-\mathrm{Cu}_{2}{ }^{\text {ii }}$	0.884 (3)	$\mathrm{S} 1-\mathrm{Cu} 2^{\text {ii }}$	2.256 (2)
$\mathrm{Cu} 2-\mathrm{S} 1^{\text {ii }}$	2.256 (2)	$\mathrm{S} 1-\mathrm{Cu} 1^{\text {vi }}$	2.324 (7)
$\begin{aligned} & \text { Symmetry codes: } \\ & -x+1,-y+1,-z+1 \\ & y-\frac{1}{4},-x+\frac{5}{4},-z+\frac{5}{4} . \end{aligned}$	$\begin{aligned} & -y+\frac{5}{4}, \\ & \text { (iv) } x \end{aligned}$	$\begin{array}{ll} +\frac{5}{4} ; & \text { (ii) } \\ z+1 ; & \text { (v) } \end{array}$	$\begin{array}{ll} +\frac{3}{2}, z ; & \text { (iii) } \\ z+1 ; & \text { (vi) } \end{array}$

Data collection: IPDS (Stoe \& Cie, 1998b); cell refinement: IPDS; data reduction: $I P D S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: CIFTAB in SHELXTL.

This work was supported by the state of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (project No. NA-720/1-1). The authors are grateful to Professor Dr Wolfgang Bensch for the use of his experimental equipment.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2621).

References

Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheng, J.-K., Yao, Y.-G., Zhang, J., Li, Z.-J., Cai, Z.-W., Zhang, X.-Y., Chen, Z.N., Chen, Y.-B., Kang, Y., Qin, Y.-Y. \& Wen, Y.-H. (2004). J. Am. Chem. Soc. 126, 7796-7797.
Jess, I., Taborsky, P., Pospisil, J. \& Näther, C. (2007). Dalton Trans. 45, 22632270.

Näther, C. \& Jess, I. (2006). Inorg. Chem. 45, 7446-7454.
Näther, C., Wriedt, M. \& Jess, I. (2003). Inorg. Chem. 42, 2391-2397.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1998a). X-SHAPE. Version 1.03. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1998b). IPDS. Version 2.89. Stoe \& Cie, Darmstadt, Germany.

supplementary materials

supplementary materials

Acta Cryst. (2007). E63, m3145 [doi:10.1107/S1600536807059855]

Hexabromidotetrakis $\left(\mu_{3}\right.$-4-pyridiniumthiolato- $\kappa^{3} S: S: S$)hexacopper(I)

M. Wriedt, I. Jess and C. Näther

Comment

Recently, we are interested in the synthesis, structures and thermal properties of coordination polymers based on copper(I) halides and N-donor ligands (Jeß et al., 2007; Näther \& Jeß, 2006 and Näther et al., 2003). We have found for example that most of the ligand rich compounds can be transformed into ligand deficient compounds on heating. Starting from these findings we have initiated systematic investigations on this topic. In these investigations we have reacted copper(I) bromide with 4,4'-bipyridyldisulfide. In this reaction, a cleavage of the S—S bond takes place leading to the formation of the title compound (I). To identify this product in further reaction by X-ray powder diffraction, a structure determination was performed.

The title compound is isotypic to that of the corresponding chlorine compound reported by Cheng et al. (2004). In this compound unusual large anisotropic displacement parameters were found, which are indicative for disordering. In the present structure determination similar observations were made but in contrast to the previous work a reasonable split model was used in the structure refinement.

The asymmetric unit of the title compound consists of two copper atoms, one bromine atom and one 4-pyridiniumthiolate ligand in general positions as well as one bromine atom which is located on a 2-fold axis. One copper atom is located near the 2-fold axis and therefore, disordered due to symmetry (see experimental part). The second copper atom shows also disorder and was refined using a split model, with both split positions located in general positions.

The crystal structure consists of a hexanuclear $\mathrm{Cu}_{6} \mathrm{Cl}_{6} \mathrm{~S}_{4}$ cluster, which are located on 4-fold rotoinversion axis (Fig. 1). The copper atoms forms strongly distorted octahedra (Fig. 2). Each of the copper atoms is connected to one bromine atom. Two of these bromine atoms act as terminal ligands, whereas the others bridge the clusters via μ_{2} coordination. $\mathrm{The}_{\mathrm{Cu}}^{2} \mathrm{Br}_{2}$ units are located on centres of inversion. The sulfur atoms are each connected to three copper atoms via μ_{3} coordination. The CuBr distances are in the range of 2.377 (4)-2.9058 (18) \AA, and the CuS distances are in the range of 2.249 (5)-2.324 (7) \AA. These values are comparable to the corresponding chlorine compound reported by Cheng et al. (2004).

Experimental

CuBr and 4,4'-bipyridyldisulfide was obtained from Alfa Aesar and ethanole was obtained from Fluka. 0.125 mmol (17.0 $\mathrm{mg})$ copper(I) bromide, $0.125 \mathrm{mmol}(27.5 \mathrm{mg}) 4,4^{\prime}$-bipyridyldisulfide and 1.0 ml of ethanol were transfered in test-tube, which were closed and heated to $120^{\circ} \mathrm{C}$ for three days. On cooling red block-shaped single crystals of (I) are obtained.

Refinement

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropic with $U_{\text {eq }}$ $=1.2 U_{\text {eq }}$ of the parent atom using a riding model with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $\mathrm{N}-\mathrm{H}=0.88 \AA . \mathrm{Cu} 1$ is disordered in two positions

supplementary materials

and was refined using a split model. Cu 2 is also disordered around a 2 -fold-axis. Therefore, structure refinement was also be performed in space groups $\mathrm{I} 4_{1}$ and $\mathrm{I} 2 /$ a but the disordering remains constant. From the inspection of the reciprocal space there are no hints for super structure reflections or satellites.

Figures

Fig. 1. Crystal structure of compound I with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: $\mathrm{i}=1-x, 1,5-y z ; \mathrm{ii}=1.25-y, 1 / 4+x, 1.25-z$; iii $=-1 / 4+y, 1.25-x, 1,25-z$.

Fig. 2. View of the $\mathrm{Cu}_{6} \mathrm{Br}_{6} \mathrm{~S}_{4}$ cluster. The strongly distorted Cu_{6} octahedra are indicated by black lines. The $\mathrm{Cu}-\mathrm{S}$ bonds are shown as dashed lines.

\#di-bromo-tetrakis(μ_{2}-bromo)-tetrakis($\mu_{3}-4$-pyridiniumthiolato-S)- \#hexa-copper(I) Hexabromido-tetrakis($\mu_{3}-4$ -pyridiniumthiolato- ${ }^{3} S$)hexacopper(I)

Crystal data

$\left[\mathrm{Cu}_{6} \mathrm{Br}_{6}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)_{4}\right]$
$M_{r}=1305.34$
Tetragonal, $I 4_{1} / a$
$a=15.3161$ (9) \AA
$b=15.3161$ (9) \AA
$c=13.2602(8) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=90^{\circ}$
$V=3110.6(3) \AA^{3}$

Data collection

Stoe IPDS-1
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$Z=4$
$F_{000}=2464$
$D_{\mathrm{x}}=2.787 \mathrm{Mg} \mathrm{m}^{-3}$
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 8000 reflections
$\theta=10.2-27.4^{\circ}$
$\mu=12.03 \mathrm{~mm}^{-1}$
$T=170$ (2) K
Block, red
$0.11 \times 0.10 \times 0.09 \mathrm{~mm}$
$T=170(2) \mathrm{K}$
φ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1998a)
$T_{\text {min }}=0.231, T_{\text {max }}=0.349$
13166 measured reflections
$\theta_{\text {max }}=28.0^{\circ}$
$\theta_{\text {min }}=2.7^{\circ}$
$h=-20 \rightarrow 20$
$k=-20 \rightarrow 20$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.076$
$S=1.03$
1853 reflections

106 parameters

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.040 P)^{2}+16.8187 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.76 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.01 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00071 (9)

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cu 1	$0.4617(3)$	$0.5805(3)$	$0.5937(3)$	$0.0423(8)$	0.60
$\mathrm{Cu1}$	$0.4786(3)$	$0.5808(4)$	$0.5715(4)$	$0.0194(6)$	0.40
Cu 2	$0.48859(13)$	$0.77650(11)$	$0.45951(9)$	$0.0490(7)$	0.50
Br 1	$0.39720(3)$	$0.44117(3)$	$0.56699(3)$	$0.02079(14)$	
Br 2	0.5000	0.7500	$0.28378(4)$	$0.01889(15)$	
S 1	$0.38433(6)$	$0.69606(6)$	$0.53945(7)$	$0.0143(2)$	
C 1	$0.3113(2)$	$0.6747(2)$	$0.4421(3)$	$0.0142(7)$	
C 2	$0.3238(3)$	$0.6077(3)$	$0.3712(3)$	$0.0217(8)$	
H 2	0.3740	0.5714	0.3750	0.026^{*}	
N 1	$0.1928(2)$	$0.6479(3)$	$0.2893(3)$	$0.0310(9)$	

H1	0.1554	0.6397	0.2399	0.037^{*}
C3	$0.2632(3)$	$0.5951(3)$	$0.2966(3)$	$0.0265(9)$
H3	0.2706	0.5488	0.2497	0.032^{*}
C4	$0.1787(3)$	$0.7131(4)$	$0.3560(4)$	$0.0377(12)$
H4	0.1286	0.7492	0.3494	0.045^{*}
C5	$0.2365(3)$	$0.7272(3)$	$0.4331(4)$	$0.0291(10)$
H5	0.2260	0.7725	0.4805	0.035^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$\mathrm{Cu1}$	$0.061(2)$	$0.0210(8)$	$0.045(2)$	$-0.0072(12)$	$-0.0381(13)$	$0.0073(12)$
$\mathrm{Cu} 1^{\prime}$	$0.0236(11)$	$0.0183(10)$	$0.0164(14)$	$0.0035(7)$	$-0.0060(7)$	$-0.0003(9)$
Cu 2	$0.0315(11)$	$0.1027(19)$	$0.0126(5)$	$-0.0408(12)$	$0.0046(5)$	$-0.0101(6)$
Br 1	$0.0270(2)$	$0.0170(2)$	$0.0184(2)$	$-0.00091(14)$	$0.00016(15)$	$-0.00071(14)$
Br 2	$0.0169(3)$	$0.0285(3)$	$0.0112(3)$	$0.0030(2)$	0.000	0.000
S 1	$0.0128(4)$	$0.0197(4)$	$0.0102(4)$	$0.0017(3)$	$-0.0010(3)$	$-0.0028(3)$
C 1	$0.0132(16)$	$0.0196(18)$	$0.0098(18)$	$-0.0018(14)$	$0.0028(13)$	$0.0014(13)$
C 2	$0.026(2)$	$0.024(2)$	$0.015(2)$	$0.0031(16)$	$-0.0010(15)$	$-0.0053(15)$
N 1	$0.0221(19)$	$0.054(3)$	$0.017(2)$	$-0.0103(17)$	$-0.0069(14)$	$-0.0011(17)$
C 3	$0.033(2)$	$0.032(2)$	$0.015(2)$	$-0.0063(18)$	$-0.0014(17)$	$-0.0063(17)$
C 4	$0.025(2)$	$0.061(3)$	$0.026(3)$	$0.012(2)$	$-0.0053(19)$	$-0.011(2)$
C 5	$0.022(2)$	$0.045(3)$	$0.020(2)$	$0.0159(19)$	$-0.0050(16)$	$-0.0080(19)$

Geometric parameters ($\left.\AA{ }^{\circ}{ }^{\circ}\right)$

Cu1-S1	2.249 (5)
$\mathrm{Cu} 1-\mathrm{S} 1^{\text {i }}$	2.253 (5)
$\mathrm{Cu} 1-\mathrm{Br} 1$	2.377 (4)
$\mathrm{Cu} 1-\mathrm{Cu} 2{ }^{\text {ii }}$	2.924 (4)
Cu1'-S1	2.319 (6)
$\mathrm{Cu1}{ }^{\prime}-\mathrm{S} 1^{\text {i }}$	2.324 (7)
Cu1'-Br1	2.477 (6)
$\mathrm{Cu1}{ }^{\prime}-\mathrm{Br} 1^{\text {iii }}$	2.666 (3)
$\mathrm{Cu1}{ }^{\prime}-\mathrm{Cu} 2{ }^{\text {ii }}$	2.689 (6)
$\mathrm{Cu} 2-\mathrm{Cu} 2^{\text {ii }}$	0.884 (3)
Cu 2 - $\mathrm{S}^{\text {ii }}$	2.256 (2)
$\mathrm{Cu} 2-\mathrm{S} 1$	2.278 (2)
$\mathrm{Cu} 2-\mathrm{Br} 2$	2.3718 (13)
$\mathrm{Cu} 2-\mathrm{Cu1}{ }^{\text {ii }}$	2.689 (6)
$\mathrm{Cu} 2-\mathrm{Br}^{\text {iv }}$	2.9058 (18)
$\mathrm{Cu} 2-\mathrm{Cu} 1^{\text {ii }}$	2.924 (4)
$\mathrm{Br} 1-\mathrm{Cu} 1^{\text {iiii }}$	2.666 (3)
S $1-\mathrm{Cu} 1-\mathrm{S} 1^{\text {i }}$	105.20 (17)
S1-Cu1-Br1	116.11 (19)

$\mathrm{Br} 1-\mathrm{Cu} 2^{\text {v }}$	2.9058 (18)
$\mathrm{Br} 2-\mathrm{Cu} 2{ }^{\text {ii }}$	2.3718 (13)
S1-C1	1.739 (4)
$\mathrm{S} 1-\mathrm{Cu} 1^{\text {vi }}$	2.253 (5)
$\mathrm{S} 1-\mathrm{Cu} 2{ }^{\text {ii }}$	2.256 (2)
$\mathrm{S} 1-\mathrm{Cu} 1^{\text {vi }}$	2.324 (7)
C1-C2	1.405 (5)
C1-C5	1.405 (6)
C2-C3	1.370 (6)
C2-H2	0.9500
N1-C3	1.351 (7)
N1-C4	1.351 (7)
N1-H1	0.8800
C3-H3	0.9500
C4-C5	1.369 (7)
C4-H4	0.9500
C5-H5	0.9500
$\mathrm{Cu} 1^{\text {iiii }}-\mathrm{Br} 1-\mathrm{Cu}^{2}$	57.53 (13)
$\mathrm{Cu} 2-\mathrm{Br} 2-\mathrm{Cu} 2^{\text {ii }}$	21.47 (8)

sup-4

supplementary materials

$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{Br} 1$	133.8 (2)	C1-S1-Cu1	115.35 (17)
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{Cu} 2{ }^{\text {ii }}$	49.64 (9)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\text {vi }}$	113.14 (17)
$\mathrm{S} 1{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{Cu} 2{ }^{\text {ii }}$	88.90 (13)	$\mathrm{Cu}-\mathrm{S} 1-\mathrm{Cu} 1^{\text {vi }}$	117.82 (10)
$\mathrm{Br} 1-\mathrm{Cu} 1-\mathrm{Cu}^{2 i}$	133.62 (17)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 2{ }^{\text {ii }}$	103.96 (13)
S1-Cu1 ${ }^{\text {- }} \mathrm{S}^{\text {i }}$	100.7 (2)	$\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{Cu} 2^{\text {ii }}$	80.94 (10)
S1-Cu1--Br1	109.9 (2)	$\mathrm{Cu} 1^{\text {vi }}-\mathrm{S} 1-\mathrm{Cu}^{\text {ii }}$	121.47 (12)
$\mathrm{S} 1{ }^{\mathrm{i}}-\mathrm{Cu1}{ }^{\prime}-\mathrm{Br} 1$	125.0 (2)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 2$	101.96 (13)
S1-Cu1'-Br1 ${ }^{\text {iii }}$	114.5 (2)	$\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{Cu} 2$	101.85 (10)
S1 ${ }^{\text {i }}$ - $\mathrm{Cu1}{ }^{\prime}-\mathrm{Br} 1^{\text {iii }}$	103.7 (2)	$\mathrm{Cu} 1{ }^{\text {vi }}-\mathrm{S} 1-\mathrm{Cu} 2$	103.73 (11)
$\mathrm{Br} 1-\mathrm{Cu1}{ }^{\prime}-\mathrm{Br} 1^{\text {iii }}$	103.49 (18)	$\mathrm{Cu} 2{ }^{\text {ii }}-\mathrm{S} 1-\mathrm{Cu} 2$	22.47 (8)
$\mathrm{S} 1-\mathrm{Cu} 1^{\prime}-\mathrm{Cu} 2^{\text {ii }}$	52.91 (13)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\prime}$	113.1 (2)
S1 ${ }^{\text {i }}$ Cu1'- $\mathrm{Cu}^{\text {ii }}$	93.4 (2)	Cu1-S1-Cu1'	9.69 (15)
$\mathrm{Br} 1-\mathrm{Cu} 1^{\prime}-\mathrm{Cu} 2^{\text {ii }}$	141.5 (3)	$\mathrm{Cu1}{ }^{\text {vi }}-\mathrm{S} 1-\mathrm{Cu1}{ }^{\prime}$	125.38 (18)
$\mathrm{Br} 1^{\text {iiii }}-\mathrm{Cu} 1^{\prime}-\mathrm{Cu}^{\text {ii }}$	65.72 (11)	$\mathrm{Cu} 2^{\text {ii }} \mathrm{S} 1-\mathrm{Cu1}{ }^{\prime}$	71.99 (12)
$\mathrm{Cu} 2{ }^{\text {ii }}-\mathrm{Cu} 2-\mathrm{Si}^{\text {ii }}$	80.2 (2)	$\mathrm{Cu} 2-\mathrm{S} 1-\mathrm{Cu1}{ }^{\prime}$	93.47 (13)
$\mathrm{Cu} 2{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{S} 1$	77.3 (2)	C1—S1-Cu1 ${ }^{\text {vi }}$	117.1 (2)
S1ii- $\mathrm{Cu} 2-\mathrm{S} 1^{\text {i }}$	119.14 (7)	Cu1-S1-Cu1 ${ }^{\text {vi }}$	108.83 (14)
$\mathrm{Cu} 2{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{Br} 2$	79.26 (4)	$\mathrm{Cu} 1^{\text {vi }}-\mathrm{S} 1-\mathrm{Cu} 1^{\text {vi }}$	9.67 (14)
$\mathrm{S} 1{ }^{\text {ii }}-\mathrm{Cu} 2-\mathrm{Br} 2$	115.46 (8)	$\mathrm{Cu} 2^{\mathrm{ii}}-\mathrm{S} 1-\mathrm{Cu} 1^{\text {vi }}$	125.75 (15)
$\mathrm{S} 1-\mathrm{Cu} 2-\mathrm{Br} 2$	114.60 (8)	Cu2-S1-Cu1 ${ }^{\text {vi }}$	110.33 (13)
$\mathrm{Cu} 2^{\text {ii }}-\mathrm{Cu} 2-\mathrm{Cu} 1^{\text {iii }}$	132.2 (2)	Cu1'-S1-Cu1 ${ }^{\text {vi }}$	116.86 (16)
$\mathrm{S} 1^{\text {ii }}-\mathrm{Cu} 2-\mathrm{Cu} 1^{1 i}{ }^{\text {ii }}$	55.10 (11)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	118.2 (4)
$\mathrm{S} 1-\mathrm{Cu} 2-\mathrm{Cu1}{ }^{\text {ii }}$	108.27 (15)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	123.2 (3)
$\mathrm{Br} 2-\mathrm{Cu} 2-\mathrm{Cu} 1^{1 i}$	131.90 (15)	C5-C1-S1	118.7 (3)
$\mathrm{Cu} 2^{\text {ii }}-\mathrm{Cu} 2-\mathrm{Br}^{1 \mathrm{iv}}$	171.01 (19)	C3-C2-C1	119.6 (4)
$\mathrm{S} 1{ }^{\text {ii }}-\mathrm{Cu} 2-\mathrm{Br} 1^{\text {iv }}$	108.10 (7)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.2
$\mathrm{S} 1-\mathrm{Cu} 2-\mathrm{Br} 1^{\text {iv }}$	100.83 (7)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.2
$\mathrm{Br} 2-\mathrm{Cu} 2-\mathrm{Br} 1^{\text {iv }}$	93.74 (5)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	121.5 (4)
$\mathrm{Cu} 1^{\text {iii }}-\mathrm{Cu} 2-\mathrm{Br}^{\text {iv }}$	56.75 (9)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1$	119.2
$\mathrm{Cu} 2{ }^{\text {ii }}-\mathrm{Cu} 2-\mathrm{Cu} 1^{\text {ii }}$	125.8 (2)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1$	119.2
$\mathrm{S} 1{ }^{\text {ii }}-\mathrm{Cu} 2-\mathrm{Cu} 1^{\text {ii }}$	49.42 (9)	N1-C3-C2	120.5 (4)
$\mathrm{S} 1-\mathrm{Cu} 2-\mathrm{Cu} 1^{\text {ii }}$	107.74 (10)	N1-C3-H3	119.7
$\mathrm{Br} 2-\mathrm{Cu} 2-\mathrm{Cu} 1^{\text {ii }}$	135.00 (11)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.7
$\mathrm{Cu} 1^{\text {iii }}-\mathrm{Cu} 2-\mathrm{Cu} 1^{\text {ii }}$	6.43 (14)	N1-C4-C5	120.1 (4)
$\mathrm{Br} 1^{\text {iv }}-\mathrm{Cu} 2-\mathrm{Cu} 1^{\text {ii }}$	63.17 (8)	N1-C4-H4	119.9
$\mathrm{Cu} 1-\mathrm{Br} 1-\mathrm{Cu} 1^{\prime}$	8.97 (13)	C5-C4-H4	119.9
$\mathrm{Cu} 1-\mathrm{Br} 1-\mathrm{Cu} 1^{\text {iiii }}$	85.40 (14)	C4-C5-C1	120.0 (4)
$\mathrm{Cu1}{ }^{\prime}-\mathrm{Br} 1-\mathrm{Cu1}{ }^{\text {iiii }}$	76.51 (18)	C4-C5-H5	120.0
$\mathrm{Cu}-\mathrm{Br} 1-\mathrm{Cu}^{\text {v }}$	126.65 (10)	C1-C5-H5	120.0
$\mathrm{Cu} 1^{\prime}-\mathrm{Br} 1-\mathrm{Cu}^{\text {v }}$	120.68 (12)		

supplementary materials

Symmetry codes: (i) $-y+5 / 4, x+1 / 4,-z+5 / 4$; (ii) $-x+1,-y+3 / 2, z$; (iii) $-x+1,-y+1,-z+1$; (iv) $x, y+1 / 2,-z+1$; (v) $x, y-1 / 2,-z+1$; (vi) $y-1 / 4,-x+5 / 4,-z+5 / 4$.

Fig. 1

Fig. 2

